

www.wobit.com.pl MIC488 – MODBUS protocol v1.23 20.07.2015 page 1

MIC488 MODBUS-RTU Protocol (v1.23)

Contents

1. Introduction .. 2

2. Transmission parameters and MODBUS functions ... 2

3. List of registers .. 3

3.1 Write and read inputs, outputs and bit registers ... 3

3.2 Write and read numerical registers .. 4

4. Modbus control description .. 7

4.1 Program control in controller memory ... 7

4.2 Turning on/off and stopping drive .. 7

4.3 Motion parameters setting (ramp) ... 8

4.4 Drive homing ... 8

4.5 Velocity and position setting .. 8

4.6 Position reset, position and velocity read .. 9

4.7 Drive status ... 9

4.8 JOG control mode ... 10

4.9 Read / set parameters in pulses (DINT data type) .. 10

4.10 User registers... 10

5. MIC488 ModbusTester program .. 11

6. Documentation revision .. 11

www.wobit.com.pl MIC488 – MODBUS protocol v1.23 20.07.2015 page 2

1. Introduction
The MIC488 controller provides RS232 and RS485 serial interfaces which ensure communication with external
devices via MODBUS-RTU protocol.
Connection with RS485 port between controllers and MASTER device, especially at bigger distances and speed
transmissions (>38400bps, >10m) should be made using twisted pair cable (shielded twisted pair as best solution).
It should be noticed to add terminator (120Ω…470Ω resistor, connected between A and B lines) at the beginning
and the ending of RS485 bus.

The controller provides communication with Master devices with data rate up to 100 frames per second (fps).

TIP!
Register addresses could be different in newer software versions. Software version should be the same as
described in this documentation.

WARNING!
COM1 (RS232) and COM2 (RS485) ports of MIC488 controller are not opt isolated. The potential between
controller/s and the other devices on this same bus (common GND) have to be the same. In the other case
communication problems could appear or device could be damaged.

2. Transmission parameters and MODBUS functions

Transmission parameters

 Default address: 1
 Default baudrate: 38400 b/s
 Stop bits: 1, Parity: none
 Timeout: 750µs (maximum time interval between next bytes in frame)

Provided MODBUS functions
Function No. (hex) Description

0x01 Read output

0x02 Read input

0x03 Read N registers (for WORD, INT, DINT, REAL)

0x05 Write input

0x06 Write 1 register (for WORD, INT)

0x10 Write N registers (for DINT, REAL)

Description of data types used in MIC488’s MODBUS-RTU

Data
type

Description Byte size /
registers

Range

BYTE 8 bit (1-byte) 1 / 1 0-255

WORD 16 bit (2-byte) 2 / 1 0…32768

INT Signed integer (2-byte) 2 / 1 -32768…32767

DINT Double integer (4-byte) 4 / 2 -2
31

…(2
31

-1)

REAL Floating points 4 / 2 1.18*10
-38

…3.40*10
38

, 0, -3.40*10
38

… -1.18*10
-38

Values entered into registers are not saved - values will return to default after re-turning on power supply.

www.wobit.com.pl MIC488 – MODBUS protocol v1.23 20.07.2015 page 3

3. List of registers

3.1 Write and read inputs, outputs and bit registers

Address Name Variable
type

Mode (MODBUS
function No.)

Description

6000
6000…6007

OUT BYTE
R (0x01),
W (0x05)

Read outputs OUT1…OUT8
Set/reset outputs OUT1…OUT8

5000…5019 IN BYTE R (0x02) Read inputs IN1…IN20

2000 M1_EN BYTE W (0x05) Enable/disable M1 drive (output M1_EN)

2001 M2_EN BYTE W (0x05) Enable/disable M2 drive (output M2_EN)

2002 M3_EN BYTE W (0x05) Enable/disable M3 drive (output M3_EN)

2003 M4_EN BYTE W (0x05) Enable/disable M4 drive (output M4_EN)

2004 M1_STOP BYTE W (0x05) Stop M1 drive (STOP)

2005 M2_STOP BYTE W (0x05) Stop M2 drive (STOP)

2006 M3_STOP BYTE W (0x05) Stop M3 drive (STOP)

2007 M4_STOP BYTE W (0x05) Stop M4 drive (STOP)

2008 M1_JOG_PLUS BYTE W (0x05) JOG+ mode of M1 drive

2009 M1_JOG_MINUS BYTE W (0x05) JOG- mode of M1 drive

2010 M2_JOG_PLUS BYTE W (0x05) JOG+ mode of M2 drive

2011 M2_JOG_MINUS BYTE W (0x05) JOG- mode of M2 drive

2012 M3_JOG_PLUS BYTE W (0x05) JOG+ mode of M3 drive

2013 M3_JOG_MINUS BYTE W (0x05) JOG- mode of M3 drive

2014 M4_JOG_PLUS BYTE W (0x05) JOG+ mode of M4 drive

2015 M4_JOG_MINUS BYTE W (0x05) JOG- mode of M4 drive

NOTE: In HMI devices, write/read functions of bit inputs/outputs are usually labeled as x0.

Table example of data for read input IN1 state (address = 5000)

Request (MASTER -> MIC488) Response (MIC488 -> MASTER)
Device address 0x01 Device address 0x01

Function 0x02 Function 0x02

Initial HI address 0x13 No. of bytes 0x01

Initial LO address 0x88 Inputs state BYTE

No. of HI inputs 0x00 CRC HI BYTE

No. of LO inputs 0x08 CRC LO BYTE

CRC HI FD

CRC LO 62

Table example of data for output OUT2 settings (address = 6001)

Request (MASTER -> MIC488) Response (MIC488 -> MASTER)
Device address 0x01 Device address 0x01

Function 0x05 Function 0x05

Initial HI address 0x17 Initial HI address 0x17

Initial LO address 0x71 Initial LO address 0x71

No. of HI inputs 0x00 No. of HI inputs 0x00

No. of LO inputs 0x00 No. of LO inputs 0x00

CRC HI 98 CRC HI 98

CRC LO 65 CRC LO 65

www.wobit.com.pl MIC488 – MODBUS protocol v1.23 20.07.2015 page 4

3.2 Write and read numerical registers

User registers for general purpose

Address Name Variable
type

Mode (MODBUS
function No.)

Description

0…498 USER_REGISTER
WORD

DIN
REAL

R (0x03), W (0x06)
R (0x03), W (0x10)
R (0x03), W (0x10)

User registers.

Control registers WORD

Address Name Variable
type

Mode (MODBUS
function No.)

Description

1000 DATA_TYPE WORD R (0x03), W (0x06)
Data type transferred by MODBUS:
0 – REAL, 1 - DINT

1001 PROG_BANK_SEL WORD R (0x03), W (0x06) Selection of program bank number to run

1002 POS_BANK_SEL WORD R (0x03), W (0x06) Selection of position bank number to run

1003 PROGRAM_CTRL WORD R (0x03), W (0x06)
Program control:
0 – STOP, 1 – START, 2 - PAUSE

1004 AXIS_CTR_MODE WORD R (0x03), W (0x06)

Velocity/position control mode for drives:
0 (DIRECT) – velocity/position achieved immediately
after write into proper register
1 (TRIGGER) – motion trigger occur after write into
AXIS_POS_TRIG (position trigger) or AXIS_VEL_TRIG
(velocity trigger) register

1005 AXIS_VEL_ABS_TRIG WORD R (0x03), W (0x06)
For mode AXIS_CTR_MODE = 1
Motion trigger from absolute velocity registers
Bit 0 – M1, Bit 1 – M2, Bit 2 – M3, Bit 4 – M4

1006 AXIS_VEL_REL_TRIG WORD R (0x03), W (0x06)
For mode AXIS_CTR_MODE = 1
Motion trigger from relative velocity registers
Bit 0 – M1, Bit 1 – M2, Bit 2 – M3, Bit 4 – M4

1007 AXIS_POS_ABS_TRIG WORD R (0x03), W (0x06)
For mode AXIS_CTR_MODE = 1
Motion trigger from absolute position registers
Bit 0 – M1, Bit 1 – M2, Bit 2 – M3, Bit 4 – M4

1008 AXIS_POS_REL_TRIG WORD R (0x03), W (0x06)
For mode AXIS_CTR_MODE = 1
Motion trigger from relative position registers
Bit 0 – M1, Bit 1 – M2, Bit 2 – M3, Bit 4 – M4

1009 M_ALL_STATUS WORD R (0x03) Not available

1010
1011
1012
1013

M1_STATUS
M2_STATUS
M3_STATUS
M4_STATUS

WORD R (0x03) Drive state:
0 – drive turned off (EN signal inactive)
1 – drive turned on, no motion (EN signal active)
2 – drive in set velocity mode
3 – drive in motion to set position mode
4 – drive achieved the set position
5 – error of achieving set position (for operation with
encoder)
6 – drive in homing mode
8 – drive in position correction mode (for operation
with encoder)
9 - drive achieved limit position L while motion towards
negative position value (by program or proximity
sensor signal KL)
10 - drive achieved limit position R while motion
towards positive position value (by program or
proximity sensor signal KR)

1014 M_ENABLE WORD W (0x06)
Turning on drive’s EN output
Bit 0 – M1, Bit 1 – M2, Bit 2 – M3, Bit 4 – M4

1015 M_DISABLE WORD W (0x06)
Turing off drive’s EN output
Bit 0 – M1, Bit 1 – M2, Bit 2 – M3, Bit 4 – M4

1016 M_STOP WORD W (0x06) Drive stop

www.wobit.com.pl MIC488 – MODBUS protocol v1.23 20.07.2015 page 5

Bit 0 – M1, Bit 1 – M2, Bit 2 – M3, Bit 4 – M4

NOTE:

 In HMI devices, write/read functions of numerical values are usually labeled as x4.
 For registers which control 4 drives at the same time (AXIS_VEL_ABS_TRIG, AXIS_VEL_REL_TRIG,

AXIS_POS_ABS_TRIG, AXIS_POS_REL_TRIG, M_ENABLE, M_DISABLE, M_STOP), 4 least significant bits of register
define number of drive which have to be controlled: Bit 0 – M1, Bit 1 – M2, Bit 2 – M3, Bit 4 – M4. For instance, to
simultaneous stop M1, M2, M3, M4 drives, M_STOP register value should be set as 15 (bits 0,1,3,4 set).

Control registers DINT, REAL
Address Name Variable

type
Mode (MODBUS

function No.)
Description

Current values and ramp parameters

1017 JOG_SPEED REAL W (0x06) Velocity of manual drives control mode.

1020
1022
1024
1026

M1_POS_ACT
M2_POS_ACT
M3_POS_ACT
M4_POS_ACT

REAL /
DINT*

R (0x03), W (0x10)
Read current drive position.
Save current position to drive. Set 0 value causes reset
of current drive position.

1028
1030
1032
1034

M1_VEL_ACT
M2_VEL_ACT
M3_VEL_ACT
M4_VEL_ACT

REAL /
DINT*

R (0x03) Read current drive velocity.

1036
1038
1040
1042

M1_ACC
M2_ACC
M3_ACC
M4_ACC

REAL /
DINT*

R (0x03), W (0x10)
Write/read acceleration in position mode and
acceleration | braking in velocity mode.

1044
1046
1048
1050

M1_DEC
M2_DEC
M3_DEC
M4_DEC

REAL /
DINT*

R (0x03), W (0x10) Write/read braking in velocity mode.

1052
1054
1056
1058

M1_VMAX
M2_VMAX
M3_VMAX
M4_VMAX

REAL /
DINT*

R (0x03), W (0x10) Write/read maximum velocity for position mode.

Set in motion.
IMPORTANT: When register AXIS_CTR_MODE (1004) = 0 (DIRECT mode) motion occur immediately after write into proper register.

When AXIS_CTR_MODE (1004) = 1 (TRIGGER mode) motion occur until when write into trigger register (properly 1005..1008 registers).

1060
1062
1064
1066

M1_HOME
M2_HOME
M3_HOME
M4_HOME

REAL /
DINT*

W (0x10)
Homing execution. Value of register determines
homing velocity.

1068
1070
1072
1074

M1_VEL_ABS
M2_VEL_ABS
M3_VEL_ABS
M4_VEL_ABS

REAL /
DINT*

W (0x10)
Set absolute velocity (drive velocity will be the same as
entered value).

1076
1078
1080
1082

M1_VEL_REL
M2_VEL_REL
M3_VEL_REL
M4_VEL_REL

REAL /
DINT*

W (0x10)
Set relative velocity (drive velocity will be equal to
current and entered velocity).

1084
1086
1088
1090

M1_POS_ABS
M2_POS_ABS
M3_POS_ABS
M4_POS_ABS

REAL /
DINT*

W (0x10)
Set absolute position (drive motion occur until
achieved set position).

1092
1094
1096
1098

M1_POS_REL
M2_POS_REL
M3_POS_REL
M4_POS_REL

REAL /
DINT*

W (0x10)
Set relative position (drive motion occur until position
will be equal to current + set value).

Registers for encoders

1100
1102
1104
1106

ENC1_IMP
ENC2_IMP
ENC3_IMP
ENC4_IMP

DINT R (0x03), W (0x10) Counter value of pulses from encoder.

www.wobit.com.pl MIC488 – MODBUS protocol v1.23 20.07.2015 page 6

1108
1110
1112
1114

ENC1_XPOS
ENC2_XPOS
ENC3_XPOS
ENC4_XPOS

REAL /
DINT*

R (0x03), W (0x10)
Counter value of pulses from encoder converted into
drive rotation.

1120
1122
1124
1126

M1_POSLIM_L
M2_POSLIM_L
M3_POSLIM_L
M4_POSLIM_L

REAL /
DINT*

R (0x03), W (0x10) Program position limitation negative shift (L)

1128
1130
1132
1134

M1_POSLIM_R
M2_POSLIM_R
M3_POSLIM_R
M4_POSLIM_R

REAL /
DINT*

R (0x03), W (0x10) Program position limitation positive shift (R)

The MIC488 is addressing registers starts with 0. For MASTER devices which addressing starts with 1, register
values should be entered with shift by 1 e.g. JOG_SPEED = 1017 + 1 = 1018

* Variable type depends on data type settings in DATA_TYPE (1000) register. REAL data type values are default, scaled on
proper motion units.

After writing 1 value into DATA_TYPE register, controller assigns and returns values in pulses (DINT type) which are not
scaled. Values in pulses are equivalent to number of steps generated by controller.

Table example of settings for device M1 absolute velocity. Function: 0x10, Register address: 1068 (M1_VEL_ABS)

Write (MASTER -> MIC488) Response (MIC488 -> MASTER)
Device address 0x01 Device address 0x01

Function 0x10 Function 0x10

Register Hi address 0x04 Initial HI address 0x04

Register Lo address 0x2C Initial LO address 0x2C

No. of HI registers 0x00 No. of HI registers 0x00

No of LO registers 0x02 No. of LO registers 0x02

No. of bytes 0x04 CRC 16 bit

Register 0x06 HI REAL/DINT* (Byte 1)

Register 0x06 LO REAL/DINT* (Byte 0)

Register 0x06 +1 HI REAL/DINT* (Byte 3)

Register 0x06 +1 LO REAL/DINT* (Byte 2)

CRC 16 bit

Table example with read current position of M1 drive. Function: 0x03, Register address: 1020 (M1_POS_ACT)

Request (MASTER -> MIC488) Response (MIC488 -> MASTER)
Device address 0x01 Device address 0x01

Function 0x03 Function 0x03

Register HI address 0x03 No. of bytes 0x04

Register LO address 0xFC Register 0x03 HI REAL/DINT* (Byte 1)

No. of HI registers 0x00 Register 0xFC LO REAL/DINT* (Byte 0)

No of LO registers 0x02 Register 0x03+1 HI REAL/DINT* (Byte 3)

CRC HI 0x04 Register 0xFC+1 LO REAL/DINT* (Byte 2)

CRC LO 0x7F CRC 16 bit

All 4-bytes types: DINT, DWORD, REAL are always included in two registers. Furthermore for DINT, first register
include least significant part while second register – most significant part. For example, to read current position of
M1 drive, 1020 and 1021 registers should be read and then make proper conversion (if there is not proper
Modbus function in MASTER driver).
2 registers conversion (4 bytes) to 32-byte type (DINT, DWORD, FLOAT).

RegisterX HI
RegisterX LO
RegisterX+1 HI
RegisterX+1 LO

<-> Byte1
<-> Byte0
<-> Byte3
<-> Byte2

32_bit_integer = Byte3<<24 + Byte2<<16 + Byte1<<8 + Byte0,

www.wobit.com.pl MIC488 – MODBUS protocol v1.23 20.07.2015 page 7

or
32_bit_integer = RegisterX + Register(X + 1)<<16

4. Modbus control description

4.1 Program control in controller memory

Program selection from memory of the controller which have to be controlled (run, stop, holdup) is possible with
PROG_BANK_SEL (1001) register. The corresponding value of selected program (0…7 value) need to be write into
register.

Using POS_BANK_SEL (1002) register, bank with positions could be selected and then used in program (when
program uses positions from position table).

PROGRAM_CTRL (1003) register controls program running:

 Write 1 value causes run program
 Write 2 value causes hold current program
 Write 0 value causes stop program

If running program comes from empty program or position bank, controller will signals error by lighting red ERR
diode.

4.2 Turning on/off and stopping drive

Write into control registers of selected drives at the same time

Registers:
 AXIS_VEL_ABS_TRIG (1005)
 AXIS_VEL_REL_TRIG (1006),
 AXIS_POS_ABS_TRIG (1007),
 AXIS_POS_REL_TRIG (1008),
 M_ENABLE (1014)
 M_DISABLE (1015)
 M_STOP (1016)

ensure selected drives controlling (e.g. turning on/off selected drives etc., motion trigger for TRIGGER mode) at
the same time. The corresponding bit setting value of selected drives should be write into selected register,
where least significant bit 0 – M1 drive, bit 1 – M2, bit 2 – M3, bit 3 – M4.
Table below includes list of all bit combination. The plus „+” symbol means that drive is selected.

selected drive value wrote into
register M1 M2 M3 M4

- - - - 0

+ - - - 1

- + - - 2

+ + - - 3

- - + - 4

+ - + - 5

- + + - 6

+ + + - 7

- - - + 8

+ - - + 9

- + - + 10

+ + - + 11

www.wobit.com.pl MIC488 – MODBUS protocol v1.23 20.07.2015 page 8

- - + + 12

+ - + + 13

- + + + 14

+ + + + 15

Output ENABLE control

 Independent control of each output with M1_EN…M4_EN (2000…2003) bit registers. One register
controls only one EN output. Write 0xFF00 value into register turn EN output on, 0x00 value turn output
off.

 Simultaneous control of selected outputs with M_ENABLE (1014) register which turns selected EN outputs
on and M_DISABLE (1015) which turns them off.

Drive stopping

 Independent stop of each drive with M1_STOP…M4_STOP (2004…2007) bit registers. Write 0xFF00 value
into register stops the drive.

 Simultaneous stop of selected drives with M_STOP (1016) register. For instance, when 15 value is write
into, the drives are stopped.

4.3 Motion parameters setting (ramp)

Motion parameters setting which control ramp is released using registers:

 M1_ACC…M4_ACC (1036…1042) – write/read acceleration in position mode and acceleration | braking in velocity
mode

 M1_DEC…M4_DEC (1044…1050) – write/read braking in velocity mode
 M1_VMAX…M4_VMAX (1052…1058) – write/read maximal velocity for position mode

Motion parameters should be entered as positive values, greater than 0!

4.4 Drive homing

Drives homing uses M1_HOME…M4_HOME (1060…1066) registers. Entered value into register defines homing
velocity. Homing occur immediately after write into register. When homing is end, drive position is automatically
reset.

Homing to the limit switch (KL) is release by write velocity as negative value.

4.5 Velocity and position setting

Absolute and relative velocity/position
Velocity and position could be set absolutely (e.g. drive achieve velocity/position value the same as entered
register value) or relatively (drive will increase or decrease velocity/position by entered register value). Registers
which contain ABS in their names set absolute values, while REL – relatively values.

Motion registers
 M1_VEL_ABS… M4_VEL_ABS (1068…1074) – set absolute velocities

 M1_VEL_REL … M1_VEL_REL (1076…1082) – set relative velocities

www.wobit.com.pl MIC488 – MODBUS protocol v1.23 20.07.2015 page 9

 M1_POS_ABS … M4_POS_ABS (1084…1090) – set absolute positions
 M1_POS_REL … M1_POS_REL (1092…1098) – set relative positions

Velocity / position setting mode
Mode is changing by write 1 value into AXIS_CTR_MODE (1004) register (TRIGGER mode) or 0 value (DIRECT
mode).

Direct mode (DIRECT), (when register AXIS_CTR_MODE = 0)
The controller performs in direct speed/position control mode (DIRECT mode) by default. The controller execute
motion immediately after write into proper motion register.

Trigger mode (TRIGGER), (when register AXIS_CTR_MODE = 1)
In this mode writing into motion registers do not causes release signal motion to drive by controller. Motion is
released after writing equivalent value to trigger registers of selected drives numbers:

o AXIS_VEL_ABS_TRIG (1005) – for release absolute velocities
o AXIS_VEL_REL_TRIG (1006) – for release relative velocities
o AXIS_POS_ABS_TRIG (1007) – for release absolute positions
o AXIS_POS_REL_TRIG (1008) – for release relative positions

It is useful when a few drives should operate at the same time to perform synchronous motion.

For instance, for M1, M2 and M3 drives, position should be set properly on 10, 15 and 20:

1) Set TRIGGER mode by write into AXIS_CTR_MODE (1004) register 1 value (0 value to return to DIRECT
mode),

2) Write into M1_POS_ABS, M2_POS_ABS and M3_POS_ABS registers properly 10, 15 and 20 values,
3) Write into trigger register AXIS_POS_ABS_TRIG (1007) 7 value (which is equivalent to 0111 bit value,

because motion is triggered for M1, M2 and M3 drives)
IMPORTANT: EN signals have to be turned on before, if they control drives work.

4.6 Position reset, position and velocity read

Read current velocity and position
Current velocity is available in M1_VEL_ACT…. M4_VEL_ACT registers.
Current position in available in M1_POS_ACT…. M4_POS_ACT registers.

Current position reset
In order to reset current position for selected drive, 0 value need to be write into proper M1_POS_ACT…
M4_POS_ACT register. Write non-zero value causes overwrite current position by entered value.

4.7 Drive status

Drive operation monitoring is possible with M1_STATUS (1010)…M4_STATUS (1013) state registers.

MX_STATUS
register value

Description

0 Drive turned off (EN signal inactive)

1 Drive turned on, no motion (EN signal active)

2 Drive in set velocity mode

3 Drive in motion to set position mode

4 Drive achieved the set position

5 Error of achieving set position (for operation with encoder)

www.wobit.com.pl MIC488 – MODBUS protocol v1.23 20.07.2015 page 10

6 Drive in homing mode

7 -

8 Drive in position correction mode (for operation with encoder)

9 Drive achieved limit position L while motion towards negative position value
(by program or proximity sensor signal KL)

10 Drive achieved limit position R while motion towards positive position value
(by program or proximity sensor signal KR)

Drive status could be used i.e. to define: is drive achieved set position before next position setting.

4.8 JOG control mode

The JOG mode could be used for manual drive position control with e.g. HMI touch panel. Motion of the drive
occur by setting proper JOG register. Motion velocity in JOG mode is defined in JOG_SPEED (1017) register (REAL
type).

Motion for each drive is triggered by bit registers:

 M1_JOG_PLUS (2008) - motion towards positive of M1 drive
 M1_JOG_MINUS (2009) – motion towards negative M1 drive
 M2_JOG_PLUS (2010) - motion towards positive M2 drive
 M2_JOG_MINUS (2011) – motion towards negative M2 drive
 M3_JOG_PLUS (2012) - motion towards positive M3 drive
 M3_JOG_MINUS (2013) - motion towards negative M3 drive
 M4_JOG_PLUS (2014) - motion towards positive M4 drive
 M4_JOG_MINUS (2015) - motion towards negative M4 drive

4.9 Read / set parameters in pulses (DINT data type)

The controller ensure control of drives without units conversion (configurable in controller) with DINT type
values. It is useful when direct setting of position in pulses is required or master driver do not support register
conversion into floating point REAL integer type.

To change data type to DINT, 1 value should be write into DATA_TYPE (1000) register. After that, all registers,
whose type is defined as REAL / DINT* will assign/return DINT type values.

Example
Drive: stepper motor 200 imp./rev. with 1/64 step resolution.
Units calculation: 200 * 64 = 12800 pulses / motor revolution.

Velocity setting 2,5 rev./sec for M1 drive:
Write into M1_VEL_ABS (1068) register 2,5 * 12800 = 32000 [imp]

Read current position of M1 drive:
Read M1_POS_ACT (1020) register, which contains (for example) 57600 value.
Current position of drive in [rev] = 57600/12800 = 4,5 [rev]

4.10 User registers

The MIC488 contains 500 general-purpose registers (0-499 addresses). User can store in these registers values,
which could be read or write by current controller program. Values type as INT, DINT and REAL could be write into
registers. In order to write DINT and REAL value type, which are always included in two adjacent registers, they
should be write into even addresses.

Register 0 1 2 3 … 498 499

www.wobit.com.pl MIC488 – MODBUS protocol v1.23 20.07.2015 page 11

 INT 0 INT 1 INT 2 INT 3 INT 498 INT 499

 DINT 0 DIN 2 DIN 498

 REAL 0 REAL 2 REAL 498

In order to reference to user registers in WBC language, commands which should be used are:
$IX – reference to register with INT type value
$DX – reference to register with DINT type value (X only as even value)
$RX – reference to register with REAL type value (X only as even value)
where X is register address 0..499

5. MIC488 ModbusTester program

MIC488 ModbusTester application provides test each controller registers and preview Modbus protocol frames.
Communication with application is released by converter USB<->RS232/RS485 with FTDI chipset.

Program may not include all registers available in device.

6. Documentation revision

v1.01:
- initial version

v1.23:
- register of limit positions MX_POSLIM_L/ MX_POSLIM_R added

